学术资讯信息

【GBCESC 2025】第四届绿色建筑、土木工程与智慧城市国际会议在湘潭圆满落幕

由湖南工程学院主办,湖南工程学院智慧建造与能源工程学院承办,并获得了爱迩思出版社(ELSP)、ESBK国际学术交流中心、AC学术平台、《Smart Construction》期刊、北京工业大学、中南大学、桂林理工大学、湘潭大学、湖南大学、昆明理工大学、湖南科技大学、湖南工业大学、西南林业大学、吉林建筑大学、湖南理工学院、湖南城市学院、河南省生态建筑与环境构建工程研究中心协办等多个单位联合支持的第四届绿色建筑、土木工程与智慧城市国际会议(GBCESC 2025),于2025年12月6日在湖南湘潭圆满落幕。本次会议汇聚了多个地区的专家学者,围绕绿色建筑、土木工程与智慧城市等前沿热点展开了深入交流与探讨。

大会现场合照

12月6日上午,湖南工程学院副校长丁选明教授进行开幕致辞。他代表主办单位向参会的专家和来宾表示热烈欢迎,对支持单位表示感谢,丁教授真诚希望各位专家把先进理念、技术带到湖南、带到湘潭,带领湖南共攀绿色、智慧科技高峰。

湖南工程学院副校长丁选明教授作开幕致辞

随后,桂林理工大学副校长钱凯教授进行了欢迎致辞。钱教授表示GBCESC系列会议始终致力于搭建一个高水平的国际学术交流平台,并希望各位与会者能够充分展示智慧、激荡思想、凝聚共识,不仅探讨技术创新,也关注政策导向、标准建设与商业模式,共同为推动全球城市与建筑行业的绿色化、数字化、智能化转型贡献真知灼见。

桂林理工大学副校长钱凯教授作欢迎致辞

本次大会汇聚了高水平行业专家和学者,我们非常荣幸地邀请到了多位在各自领域享有盛誉的国际知名专家:日本工程院外籍院士-北京工业大学赵衍刚教授,国家优青北京工业大学金浏教授,北京工业大学科发院副院长刘占省教授,国家级人才计划-武汉大学赵福云教授,长江学者-浙江大学梅国雄教授(线上),国家级高层次青年人才-湖南大学丁政豪教授,他们带来了精彩的主旨报告,为大会增添了浓墨重彩的一笔。

▲日本工程院外籍院士-北京工业大学赵衍刚教授作主旨报告

▲国家优青-北京工业大学金浏教授作主旨报告

▲北京工业大学科发院副院长刘占省教授作主旨报告

▲国家级人才计划-武汉大学赵福云教授作主旨报告

▲国家级高层次青年人才-湖南大学丁政豪教授作主旨报告

下午,会议开设了院长论坛,与会专家围绕两大主题达成重要共识:面对“绿色与智能”的双重驱动,土木工程学科的边界正在发生本质性拓展,与新一代信息技术、材料科学及环境科学的交叉融合已成为学科发展的必然趋势。这一变革对人才培养提出了新的要求。

在此背景下,以工程教育专业认证标准为指导,系统推进课程体系重构势在必行。核心在于使课程设置和培养目标与学科新发展及行业新需求紧密对接,确保人才培养质量满足未来工程实践的需要。该论坛形成的共识为学科的战略转型与教学改革提供了明确方向。

院长论坛现场

吉林建筑大学在吉林也盛大召开了第二会场,在吉林会场以及湘潭下午的分论坛环节中,来自多所高校和科研单位的学者分享了自己的最新研究进展。这些报告的发言,有见解,有特色,大家解放思想、畅所欲言,激荡出思想碰撞的火花,使会议充满了浓厚的研讨氛围。

▲吉林建筑大学第二会场合照

▲分论坛一合照

▲分论坛二合照

▲分论坛三合照

▲分论坛四合照

大会举行了晚宴暨颁奖仪式,对会议支持单位以及在会议投稿、论坛组织及报告学者中表现突出的组织和个人进行了表彰。在温馨的氛围中,与会者们借此机会互相交流,增进了彼此的了解和合作。随着晚宴的结束,第四届绿色建筑、土木工程与智慧城市国际会议也圆满落幕。

图组 颁奖晚宴

第四届绿色建筑、土木工程与智慧城市国际会议(GBCESC 2025)的成功举办,不仅为学术界和产业界搭建了一个思想碰撞、成果共享的平台,更进一步促进了相关领域的跨界融合与协同创新。主办方表示,相信在各方的持续努力与支持下,GBCESC将不断汇聚智慧与力量,打破学科壁垒、突破技术瓶颈,快速转化为推动产业升级推动科技进步与产业发展,共同开启智能时代的新篇章。

592025-12-11

26岁任浙大博导?学校最新回应

近日,出生于1999年、现年26岁的闵超,已担任浙江大学马克思主义学院“新百人计划”研究员、博士生导师的消息,引发舆论关注。

学院回应:本人很优秀已获博士学位

为核实相关情况,12月8日,封面新闻记者联系到浙江大学马克思主义学院办公室,工作人员向记者确认,闵超确实是学校的“新百人计划”研究员,并拥有博士生导师资格。但网上的信息有误,他并非是在读博士生。

工作人员告诉记者:“实际上,闵超是硕博连读的,2021年读的硕士,2023年转为博士,2025年就已经毕业了。硕博连读的学制是5年时间,他是符合规定的提前一年毕业。毕业了以后,闵超才入选了我们学校的‘新百人计划研究员’。同时,网友说的‘破格晋升’也不太对,因为他其实没有所谓的‘晋升’,他就是一个普通的老师。”

网友提出的“学生”指导“学生”一说。工作人员回复称,首先,闵超已不是学生,其次,他刚刚入职,目前还没有到招生的时候。此外,他仅仅只是拥有了“博士生导师资格”,这并不代表马上就能招生,能不能招到,尚且还未知。

“闵超老师本人其实是非常优秀的,百人计划研究员的考核非常残酷,一般人是不一定有勇气来走这个通道的。希望大家对我们的年轻老师多一点包容和理解,其实我们的人才引进程序都很规范的,完全可以接受社会监督。”

闵超学习工作经历公布

记者从浙江大学马克思主义学院了解到,闵超于1999年1月出生,河南省驻马店市正阳县人,父母均在家务农。2017年至2021年,在郑州大学马克思主义学院就读本科;其间,2020年9月,以郑州大学马克思主义学院思想政治教育专业综合成绩第一名获得推免资格,通过浙江大学招生程序,被录取为浙江大学马克思主义学院2021级硕士研究生。2021年9月进入浙江大学马克思主义学院攻读硕士学位;2023年1月,通过浙江大学博士生招生“申请-考核”选拔机制被录取为浙江大学马克思主义学院2023级春季硕博连读生,于2023年3月转入攻读博士学位阶段。

就读浙江大学以来,闵超以独立作者或第一作者发表CSSCI论文5篇(4篇独作,1篇一作),包括发表在《马克思主义研究》《思想理论教育导刊》等高水平期刊上的成果;其本人也已修满规定学分,相关培养环节已全部通过,符合《浙江大学研究生学位申请实施办法(试行)》规定的提前毕业条件,2025年6月申请提前毕业,毕业论文送外审以全优(5个专家均评价为A)的成绩通过双盲隐名评阅,9月通过博士学位论文答辩并获得博士学位。

今年,闵超本人提交“新百人计划”研究员应聘申请材料,经学校评审,同意聘任闵超为“新百人计划”研究员。10月,正式入职浙江大学,作为“新百人计划”研究员具备博士研究生招生资格,目前名下无博士研究生。

来源:封面新闻,中国青年报,仅用于学术分享,如有侵权请联系删除。

2312025-12-10

Smart Construction入选2025年中国科技期刊卓越行动计划高起点新刊项目

近日,由北京工业大学与爱迩思出版社(ELSP)共同创办的国际英文期刊Smart Construction(《智能建造与智慧运维》) 成功入选2025年度“中国科技期刊卓越行动计划”二期高起点新刊项目。这是期刊创刊以来取得的重要突破,也标志着 ELSP在支持高水平国际英文期刊建设方面迈出关键一步。

中国科技期刊卓越行动计划二期项目(2024-2028年)是由中国科协、教育部、科技部、财政部、国家新闻出版署、中国科学院和中国工程院共同实施,旨在加快培育世界一流科技期刊,持续增强我国科技期刊的学术引领力和国际影响力。其中,高起点新刊项目按照前瞻布局、以域选刊、突出引领的总体思路,促进优质出版资源集聚,重点支持新兴交叉、战略前沿、关键共性技术以及传统优势领域,创办高起点科技期刊,拓展高端学术交流阵地。本次入选体现了Smart Construction在学术质量、国际影响力与发展潜力方面获得专家评审的高度认可。

Smart Construction依托北京工业大学“双一流”土木工程学科,于2024年5月创刊,期刊拥有院士领衔的国际化编委团队,由中国工程院院士杜修力教授、中国工程院外籍院士、澳大利亚工程院院士郝洪教授、中国工程院外籍院士Billie F. Spencer, Jr 教授和日本工程院外籍院士赵衍刚教授4位院士担任共同主编。期刊聚焦智能建造、建筑数字化、智慧运维与智慧城市等前沿方向,致力于打造国际高水平学术交流平台。创刊以来,期刊已被Scopus数据库收录,国际传播影响力不断提升。

此次成功入选“高起点新刊”,将进一步推动期刊在内容建设、国际化传播、编委队伍建设及出版能力提升等方面的全面发展。未来,ELSP将继续携手北京工业大学,共同推进Smart Construction的持续高质量发展,助力我国智能建造领域的科技创新成果在国际舞台上广泛传播。

ELSP出版社

ELSP(ELSPublishing)是一家专业出版高质量英文期刊的出版机构。期刊平台不仅为高校和科研院所提供机构英文期刊出版服务,同时也为学者提供共创优质英文期刊服务。

ELSP目前在建高水平英文科技期刊近40余种。与北京大学、清华大学、上海交通大学、南京大学、中山大学、复旦大学、中国石油大学(华东)、北京工业大学、西北大学、中国政法大学、燕山大学、西湖大学、中美(河南)荷美尔肿瘤研究院等“双一流”高校、研究院所和顶尖学者联合创办Blockchain , AI and Autonomous Systems , Robot Learning, ExRNA, International Journal of Environmental Epidemiology, Molecular Chemistry,AI&Materials, Smart Construction,Continent and Life Evolution,Law, Ethics & Technology, Advanced Equipment,Neuroelectronics,Advanced Cancer Research等。

ELSP愿与学者一道,努力推动中国科技期刊快速取得显著学术影响力、跻身国际一流学术期刊行列。

诚邀投稿

截至2026年底,Smart Construction期刊将继续免除文章处理费用,诚邀广大作者踊跃投稿。共同探讨前沿问题,分享最新研究成果。

感谢您对Smart Construction的关注与支持,期待与您共同推动先进制造领域的创新与发展!

联系方式

ELSP官网:elspublishing.com/home

期刊官网:https://www.elspub.com/journals/smart-construction/home/

编辑部邮箱:smartcon@elspub.com

投稿链接:jms.elspub.com/login

922025-12-09

【IEEE ICBCTIS 2025】第五届区块链技术与信息安全国际会议在海口成功举办

12月6日,由IEEE北京分会和海南大学主办、海南大学计算机科学与技术学院承办、中原工学院、ESBK国际学术交流中心、AC学术平台联合协办的第五届区块链技术与信息安全(IEEE ICBCTIS 2025)在海口盛大开幕。本次会议汇聚来自全球区块链领域的知名学者与青年才俊,围绕区块链、信息安全等多个研究热点展开深入交流。

会议现场合照

6日上午,大会在海口温德姆花园酒店隆重开幕。主办方代表海南大学计算机科学与技术学院副院长程杰仁教授首先作欢迎致辞,协办方代表中原工学院网络空间安全学院执行院长潘恒教授作开幕致辞,双方代表都在发言中肯定了本次会议在学术交流和科技合作方面的重要作用,并对莅临现场及线上参会的国内外嘉宾表示热烈欢迎与诚挚感谢。

▲海南大学计算机科学与技术学院副院长程杰仁教授作欢迎致辞

▲中原工学院网络安全学院执行院长潘恒教授作开幕致辞

本次会议主会场邀请了三位著名学者作主旨报告和两位学者作特邀报告,他们分别是大连理工大学胡祥培教授(长江学者、国家杰青)、西安电子科技大学闫峥教授(IEEE FELLOW)和海南大学程德波教授(海外优青);湖南工商大学蒋伟进教授和中国民航大学鲁艳蓉教授。报告涵盖区块链与信息安全等多个领域,展示了全球计算机区块链领域的最新研究成果与发展趋势。现场反响热烈,互动积极,专家与听众展开了深入的学术探讨。

▲大连理工大学胡祥培教授作主旨报告

▲西安电子科技大学闫峥教授作主旨报告

▲海南大学程德波教授作主旨报告

▲湖南工商大学蒋伟进教授

▲中国民航大学鲁艳蓉教授

当日下午,来自多所高校和科研单位的学者在分会场分享了自己的最新研究进展。报告内容丰富,交流深入,进一步增强了海内外学术界的互通与合作。

分会场现场

晚上,大会举行了颁奖晚宴,对在会议投稿、学者报告与学生口头报告中表现突出的作者进行了现场表彰。颁发了多个奖项,以鼓励青年学者的创新探索和卓越表现。

颁奖晚宴现场

在热烈融洽的交流氛围中,会议主办方表达了对第六届ICBCTIS会议的美好展望,希望未来能继续搭建高水平国际交流平台,推动区块链技术、信息安全等相关领域的创新发展与多元合作。

522025-12-09

Breakthrough in scalable metasurface manufacturing: POSTECH team proposes nanoimprint lithography solutions with efficiency near electron beam lithography

EurekAlert! - Metasurfaces, ultra-compact optical devices capable of "precisely manipulating light," have shown great potential in augmented reality (AR) glasses, holographic projection, biosensing, and other fields. However, traditional manufacturing technologies face a dilemma: either they are costly and inefficient, or they lack sufficient performance, making large-scale mass production difficult. Recently, a team led by Yujin Park, Donghoe Kim, and Junsuk Rho from Pohang University of Science and Technology (POSTECH), South Korea, published a review paper in Optics and Photonics Research (Opt. Photonics Res.), systematically proposing two innovative strategies based on nanoimprint lithography (NIL). These strategies successfully address the "low refractive index" limitation of traditional processes, bringing the transition of metasurfaces from laboratory research to industrial production within reach.

image: Schematic overview of metasurface fabrication approaches, comparing E-beam lithography with mass-production strategies based on nanoimprint lithography, including particle-embedded resins and hybrid materials.

Credit: Jesus Yujin Park and Donghoe Kim and Junsuk Rho/Pohang University of Science and Technology (POSTECH)

Metasurfaces are composed of nanoscale "micro-optical units" (meta-atoms). Similar to traditional lenses and filters, they can control the direction, color, and phase of light, but they are hundreds of times thinner and lighter than conventional optical devices. To achieve such performance, two key conditions must be met during manufacturing: first, high-precision nanoscale patterning, and second, the use of high-refractive-index materials (which can "bend" light more strongly to enhance manipulation efficiency).

For a long time, electron beam lithography (EBL) has been the "gold standard" for metasurface manufacturing. It can create patterns with a precision of up to 80 nm, and when combined with deposition technologies like plasma-enhanced chemical vapor deposition (PECVD), it can produce metasurfaces using high-refractive-index materials, achieving an optical efficiency of up to 89%. However, EBL has obvious shortcomings: it draws patterns point by point like "writing by hand with a pen," and can only process small areas at a time. Not only is it extremely costly (the cost of a single batch production is 5-10 times that of NIL), but its throughput is also surprisingly low—it takes several days to process a single 12-inch wafer, making it completely unable to meet the needs of industrial mass production.

To solve the scalability issue, researchers once tried nanoimprint lithography (NIL). This technology replicates nanoscale patterns in batches using a prefabricated mold, similar to "stamping." Its throughput is more than 100 times that of EBL, while the cost is only 1/20 of EBL. However, a new problem emerged: the refractive index of the resin used in traditional NIL is only about 1.5 (close to ordinary glass). Metasurfaces made directly from this resin have an optical efficiency of less than 10%, so they can only be used as "temporary templates" and require additional processing to improve performance, which instead increases manufacturing complexity.

To address the refractive index problem of NIL, the team focused on proposing two solutions in the review. These solutions not only retain the advantages of NIL—high speed and low cost—but also enable metasurfaces to achieve performance comparable to that of EBL processes.

The first strategy is the "hybrid material method": first, nanoscale patterns are imprinted on low-refractive-index resin using NIL, and then a high-refractive-index thin film is coated on the surface of the patterns using "atomic layer deposition (ALD)" technology. For example, titanium dioxide (with a refractive index of 2.3-2.5) is used for visible light scenarios, and zirconium oxide (with a refractive index of over 2.2) is used for ultraviolet (UV) light scenarios. This thin film acts like a "high-refractive-index coat," significantly improving the optical efficiency of the resin patterns. The team's experimental data shows that visible-light metalenses manufactured using this method achieve a maximum focusing efficiency of 89.6% at wavelengths of 450-635 nm, which is almost the same as that of the EBL process. More importantly, this method can already be used for batch production on 12-inch wafers, reducing the manufacturing time per wafer to less than 2 hours.

The second strategy is the "particle-embedded resin (PER) method": high-refractive-index nanoparticles (such as titanium dioxide and silicon particles) are directly mixed into NIL resin, similar to "adding crystal powder to glue," turning the resin itself into a high-refractive-index material. This method does not require subsequent coating, allowing metasurfaces to be manufactured in one step, further simplifying the process. The team also optimized the PER method to address its shortcomings: to solve the problem of "structural damage during demolding," they developed a water-soluble polyvinyl alcohol (PVA) mold—during demolding, the mold only needs to be dissolved in water to obtain undamaged nanostructures; to solve the problem of "residual layers affecting light transmittance," they used a specially designed tape to precisely peel off the residual layers, reducing light scattering of the metasurfaces by more than 30%. Currently, the PER method can manufacture high-precision structures with an aspect ratio of 6, and infrared metalenses manufactured using this method achieve a focusing efficiency of 47% at a wavelength of 940 nm, which can be used for human blood vessel imaging.

The breakthroughs of the two strategies have also enabled metasurface applications to break free from the limitations of "flat surfaces and single wavelengths."

In terms of wavelength coverage, the zirconium oxide coating used in the hybrid material method is suitable for UV scenarios (such as optical components for deep UV lithography), while the silicon particles in the PER method are suitable for infrared scenarios (such as thermal imaging and LiDAR sensors). Titanium dioxide, whether used as a coating or particles, can work efficiently in the visible light range and can be applied to optical lenses for AR glasses and high-definition holographic displays.

In terms of substrate adaptability, the team also extended the PER method to biodegradable materials and curved surfaces: they mixed high-refractive-index particles into hydroxypropyl cellulose (HPC) resin to create metasurface labels that can be directly attached to the surface of fruits like apples. These labels not only have anti-counterfeiting functions but also can be dissolved in water, avoiding packaging pollution. At the same time, the PER method can also imprint patterns on curved glass surfaces, providing a low-cost manufacturing solution for the "curved optical windows" of automotive LiDAR.

Despite achieving significant progress, the team also objectively pointed out in the paper that there are still two major challenges to be solved in the large-scale manufacturing of metasurfaces: first, the peeling of residual layers in the PER method currently relies on manual adjustment of tape adhesion, and automated equipment needs to be developed in the future to ensure consistency in mass production; second, the ALD coating technology used in the hybrid material method currently requires multiple "precursor injection-cleaning" cycles to coat each thin film, resulting in slow speed, and the process needs to be optimized to improve throughput.

"Metasurfaces are expected to transform optical devices from being 'bulky' to 'thin and lightweight'—for example, reducing the thickness of camera lenses from several centimeters to the micrometer level," said Professor Junsuk Rho, the leader of the team. "Next, we will focus on promoting the combination of these two strategies with roll-to-roll (R2R) manufacturing technology. Our goal is to achieve 'hundred-meter-level' continuous production of metasurfaces, further reducing costs and enabling more consumer electronics and medical devices to use this new type of optical device."

Park Y, Kim D, Rho J. Nanoimprint lithography for scalable manufacturing of optical metasurfaces. Opt. Photonics Res. 2025(1):0001, https://doi.org/10.55092/opr20250001

Source from [https://www.eurekalert.org/news-releases/1107536].

692025-12-05

Research on intelligent analysis method for dynamic response of onshore wind turbines

Researchers have developed a high-fidelity 13-degree-of-freedom nonlinear model and an intelligent algorithm for wind turbine dynamic analysis. This framework accurately captures complex tower-blade interactions, including often-neglected torsional effects, achieving a remarkable agreement with high-fidelity benchmarks. Published in Smart Construction, this work provides a powerful and efficient tool for structural assessment and future optimization of large-scale wind energy systems.

image: The proposed intelligent analysis method bridges high-fidelity modeling and computational efficiency. It uses an iterative algorithm to identify optimal mode shapes, achieving a key response error of less than 3.5% against the high-fidelity benchmark OpenFAST, enabling faster and reliable wind turbine dynamic simulation.

Credit: Xuhong Zhou/Chongqing University, Jiepeng Liu/Chongqing University, Guoqing Huang/Chongqing University, Liang Cao/Hunan University, Maolin Dai/Chongqing University

The global push for sustainable energy has cemented wind power's role in the renewable transition. However, designing safe and cost-effective onshore wind turbines requires a deep understanding of their dynamic behavior under complex environmental loads. Traditional modeling approaches often struggle to balance computational efficiency with simulation accuracy, particularly in capturing the full coupled dynamics of the entire system.

Addressing this challenge, a research team led by Professor Xuhong Zhou from Chongqing University has developed an innovative nonlinear dynamic modeling and intelligent analysis framework for onshore wind turbines. Their study introduces a comprehensive 13-degree-of-freedom (13-DOF) multibody model derived using Euler-Lagrange formalism.

"This model provides a holistic view of wind turbine dynamics," explains Professor Guoqing Huang. "A key advancement is the explicit incorporation of the tower's torsional degree of freedom, an aspect often simplified in conventional models but critical for accurate load assessment in the upper tower sections."

The tower and blades are modeled as Euler-Bernoulli beams capable of capturing both bending and torsional deformations, with aerodynamic loads computed via an enhanced Blade Element Momentum theory. To tackle the critical challenge of selecting optimal vibration mode functions—which significantly impact computational cost and result accuracy—the team proposed an intelligent mode selection algorithm. This algorithm automatically identifies the most suitable mode shapes based on structural response convergence.

"A major hurdle in efficient simulation is choosing the right modal representations without sacrificing physical accuracy," says Professor Jiepeng Liu. "Our intelligent algorithm systematically optimizes this selection, striking a balance that avoids the prohibitive computational cost of high-fidelity commercial tools while maintaining high accuracy."

The numerical simulations, implemented symbolically in MATLAB?, were rigorously validated against OpenFAST, a widely recognized high-fidelity simulation tool from the National Renewable Energy Laboratory (NREL), using the NREL 5-MW reference turbine as a benchmark. The results demonstrated that the proposed model effectively captures nonlinear and coupled dynamic behavior.

"The validation showed a close agreement with OpenFAST outputs, with relative errors in key response metrics, such as tower-top and blade-tip displacements, maintained within 3.5%," notes Doctor Maolin Dai from Chongqing University. "This level of accuracy, achieved at a fraction of the computational expense, is highly promising for engineering applications."

This modeling framework offers a reliable tool for the structural dynamic assessment of existing turbines and establishes a solid foundation for future applications in optimization and control of large-scale wind energy systems. By enabling more accurate and efficient simulations, it can contribute to the design of lighter, safer, and more economically competitive wind turbine towers, which account for a significant portion of project costs.

"The framework is particularly suitable for preliminary design, parameter sensitivity studies, and dynamic response analysis," concludes Associate Professor Liang Cao from Hunan University. "It charts a clear path for developing next-generation, performance-driven design tools for the wind energy industry."

The team acknowledges future directions, including further theoretical refinement to capture more complex dynamic couplings and expansion of the model's validation under non-steady-state conditions like turbulent inflow.

This paper "Research on intelligent analysis method for dynamic response of onshore wind turbines" was published in Smart Construction (ISSN: 2960-2033), a peer-reviewed open access journal dedicated to original research articles, communications, reviews, perspectives, reports, and commentaries across all areas of intelligent construction, operation, and maintenance, covering both fundamental research and engineering applications. The journal is now indexed in Scopus, and article submission is completely free of charge until 2026.

Citation:

Dai M, Cao L, Huang G, Zhou X, Liu J. Research on intelligent analysis method for dynamic response of onshore wind turbines. Smart Constr. 2025; 20250028. https://doi.org/10.55092/sc20250028

Source from [https://www.eurekalert.org/news-releases/1106426].

702025-12-05